If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-50+2x^2=0
a = 2; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·2·(-50)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*2}=\frac{20}{4} =5 $
| 4t=60+10 | | X(x-9)=18 | | 9x+4x÷3x=27 | | 1.1y=1.6y | | 3^x+2=7x | | (2/3x+1=5-8) | | y^2-22y+10=0 | | 2x+2=3×-2 | | X(x+7)=15 | | X^2+10x÷5=840 | | 4.6•y=44.16 | | Y+50=2y-20 | | 7x/2=5x-9/6 | | 24-n=25 | | 79=2a | | X(x+4)=23 | | x^2+197x-5000=0 | | 64÷2x=8 | | 216=(x+6)*x | | x^2+12=216 | | 75+2x=5.75x | | 50+2x=4.00 | | 10=((t*t)-t)/2 | | 3x^2+6x=1/3 | | 10=t^2-t/2 | | -3(4x-2)=-6(2x-4) | | (17x+4)+(19x-2)=180 | | 10-t^2+t*2=0 | | 0=32t^2+40t-48 | | 32t^2+40t-48=0 | | R(n)=0.25n0.75+0.25n. | | 20.7+n=9 |